
Document No.: AN1094

www.geehy.com Page 1

Application Note

Application Note of APM32F4xx Flash

Simulating EEPROM

Document No.: AN1094

Version: V1.0

Document No.: AN1094

www.geehy.com Page 2

1 Introduction

This application note is used to introduce the implementation of applying internal

Flash simulation EEPROM function on the APM32F4xx series, including

hardware design and software design methods. For information about chips and

registers, please refer to the User Manual and Datasheet on the official website.

This application note takes APM32F407ZE model of APM32F4xx series as an

example.

Document No.: AN1094

www.geehy.com Page 3

Contents

1 Introduction .. 2

2 Introduction to APM32F4xx FLASH Memory ... 4

2.1 FLASH MEMORY STRUCTURE BLOCK DIAGRAM .. 4

2.2 INTRODUCTION TO FLASH MEMORY STRUCTURE BLOCK DIAGRAM 4

3 Principle of APM32F4xx FLASH simulating EEPROM 5

3.1 INTRODUCTION TO EEPROM .. 5

3.2 COMPARISON BETWEEN APM32F4XX FLASH AND EEPROM 5

3.3 IMPLEMENTATION OF APM32F4XX FLASH SIMULATING EEPROM 6

4 Initialization Parameter Description for APM32F4xx FLASH

Simulating EEPROM Routine .. 8

4.1 SPECIFY THE FLASH START ADDRESS AND RAM SPACE 8

4.2 FLASH SECTOR CONFIGURATION INITIALIZATION 8

5 Introduction to routine design of APM32F4xx FLASH simulating

EEPROM ... 10

5.1 HARDWARE DESIGN .. 10

5.2 SOFTWARE DESIGN ... 11

6 Revision history ... 18

Document No.: AN1094

www.geehy.com Page 4

2 Introduction to APM32F4xx FLASH Memory

FLASH memory, also called flash memory, is usually used to store program codes,

data and other information. In the APM32F4xx series, the system can be booted

from Flash memory by configuring the BOOT0 to connect to GND pin. When the

main flash memory is mapped to the boot space, it can still be accessed at its

original address, that is, the contents of the flash memory can be accessed in two

address areas.

2.1 FLASH Memory Structure Block Diagram

The Flash memory structure of APM32F4xx mainly consists of main storage block

and information block. In the information block, there are system storage blocks,

OTP areas, and option bytes, as shown in Figure 2-1:

Figure 2-1 FLASH Memory Structure Block Diagram

2.2 Introduction to FLASH Memory Structure Block Diagram

Main storage block: This section is mainly used to store application code, boot

program code, and data constants. It is mainly divided into 12 sectors. The first

four sectors are 16k, the sector 4 is 64k, and the sectors 5-11 are 128k. The start

address of the main storage block is 0x08000000, from which the code starts

running.

System storage block: This section is mainly used to store BootLoader code,

which is used to initialize the boot initialization phase of the system, initiate the

hardware before loading the operating system, and load the operating system.

OTP area: One-time programmable (storage area), which means that once the

data is written, it cannot be modified. This area has a total of 528 bytes and is

Document No.: AN1094

www.geehy.com Page 5

divided into two areas. One is divided into 512 bytes, which can be used to store

user data, and the other is divided into 16 bytes, which can be used to lock

corresponding blocks.

Option byte: It is used to configure read/write protection for FLASH, BOR level in

power management, software/hardware watchdog, and other functions.

3 Principle of APM32F4xx FLASH simulating

EEPROM

Since there is no EEPROM memory in the APM32F4xx series, and the Flash

memory and RAM memory are built in the APM32F4xx series, Flash memory

can be combined with RAM memory to simulate EEPROM, and produce the

same effect as read-write EEPROM memory in terms of user experience.

3.1 Introduction to EEPROM

EEPROM, Electrically Erasable Programmable Read Only Memory, is a

non-volatile storage area. EEPROM can read and write data by bytes, but data

does not need to be erased before writing.

3.2 Comparison between APM32F4xx Flash and EEPROM

Flash and EEPROM are both non-volatile memory and can both save data in

case of power-down. But they also have many differences, and Figure 3-1 lists

the main differences between internal Flash of APM32F4xx chip and EEPROM:

Figure 3-1 Comparison between Flash and EEPROM

3.2.1 Advantages of APM32F4xx Flash simulating EEPROM

1. The cost is low. Using internal Flash to simulate EEPROM can reduce the

use of EEPROM storage chips and save costs.

2. The read and write speed is fast. The read and write speed of the internal

Flash of the MCU is higher than that of EEPROM, and it can read a large

Document No.: AN1094

www.geehy.com Page 6

amount of data in a short period of time.

3. The capacity is large. The Flash memory has a larger capacity than

EEPROM memory, and can store more data and programs.

4. The anti-jamming capability is strong. The internal Flash of MCU does not

use external communication bus interfaces such as I2C and SPI, and there is no

problem of interference of external communication bus.

3.3 Implementation of APM32F4xx FLASH simulating

EEPROM

3.3.1 Implementation steps

Write operation:

1. Create a buffer with the same size as the sector in RAM.

2. Read the sector data to be written into the cache.

3. Overwrite the data in the cache.

4. Erase the sector (before erasing the sector, a judgment will be made. If it is

already in the erased state, there is no need to erase it again).

5. Write the data to the sector.

Read operation:

1. Similar to the operation of reading the memory. For example, to read

0x8000000 data: *(uint32_t*)0x80000000.

3.3.2 Implementation difficulties and solutions

1. In the APM32F4xx series, the minimum sector of Flash is 16KB, the

maximum sector is 128KB, and the maximum RAM size available to the user is

128KB. In the process of simulating EEPROM in Flash, in order not to change

the existing data when erasing Flash, it is necessary to create a RAM space

with the same size as the Flash sector as the cache when writing or erasing the

Flash. If a sector size of 128KB is selected as the space for Flash to simulate

EEPROM, there is no enough RAM size to create a cache for Flash to simulate

the EEPROM.

2. In the APM32F4xx series, the first four sectors are 16KB, so it is suitable for

Document No.: AN1094

www.geehy.com Page 7

Flash to simulate the EEPROM. However, among these four sectors, for the first

sector, when the MCU is powered on, it will fetch instructions from this sector to

run the program. If there are no valid CPU instructions stored in this area, the

program will run abnormally.

3. Based on the analysis of points 1 and 2, only sectors 1-3 are suitable for

Flash to simulate the EEPROM.

Document No.: AN1094

www.geehy.com Page 8

4 Initialization Parameter Description for

APM32F4xx FLASH Simulating EEPROM Routine

When simulating EEPROM through APM32F4 Flash, the sector size of the Flash,

the total size of the Flash, the start address of the Flash, and the size of the test

array need to be configured. Below are explanations and configuration description

of initialization parameter macro definition or variable definition of this section.

4.1 Specify the Flash start address and RAM space

The code is as follows:

1. In the first sentence of code, a const array is defined and the compiler

properties are used to specify the start address of the array in Flash. So when

we use the sectors 1-3, this Flash space will not be overwritten by the code. The

size of this array is the size of the EEPROM simulated by Flash, and users can

define the size of the space themselves, but it must be an integer multiple of the

sector size.

2. Define a buffer with the same size as the Flash sector in RAM to solve the

problem that the original data cannot be changed when erasing Flash.

4.2 Flash sector configuration initialization

The code is as follows:

Document No.: AN1094

www.geehy.com Page 9

1. In the first three sentences of code, the start address of each sector is

configured for experimental operation.

2. In the fourth sentence of the code, the size of the experimental sector is

configured.

3. In the fifth sentence of the code, the total size of the experimental sector is

configured, and is twice the size of the experimental sector. The reason is that in the

Flash simulating EEPROM experiment, every time a data is written, an erase

operation will be performed to leave space for new data. Moreover, Flash can only

erase within the entire sector, so if the new data only covers partial data of a certain

sector, it will result in the mixture of old and new data, and data loss or error will be

caused.

4. In the sixth sentence of the code, the start address in the Flash simulating

EEPROM experiment is configured and aligned with the sector.

5. In the seventh sentence of the code, the end address of the Flash simulating

EEPROM is configured.

6. In the eighth sentence of the code, the test cache size is configured.

7. In the ninth sentence of the code, the boundary address of the first sector is

selected as the test address to test whether cross-sector test can be conducted and

observe the read and write stability in the entire Flash chip.

Document No.: AN1094

www.geehy.com Page 10

5 Introduction to routine design of APM32F4xx

FLASH simulating EEPROM

Routine function introduction: After downloading the program, initialize the serial

port, fill in the test array data by loop, and then call the Flash write operation

interface function to perform write operation. After the write operation is over,

call the Flash read operation interface function to perform read operation.

Finally, by loop, judge whether write and read are consistent. If they are

consistent, print "Test Successful!"; otherwise, print "Test Error!".

5.1 Hardware design

Hardware design required for the experiment of this routine:

1. Internal Flash of APM32F4

2. USB-to-TTL line

The wiring of the serial port used in this experiment is shown in PA9 and PA10

of Figure 5-1, and a USB-to-TTL line is used to receive and transmit data

through the serial port.

Figure 5-1 Serial Port Wiring Schematic Diagram

Document No.: AN1094

www.geehy.com Page 11

5.2 Software design

To implement the experiment of APM32F4xx Flash simulating EEPROM, the size

of the sector shall be planned and defined, and the read and write operation

functions of Flash shall be implemented. The main program code is mainly used

to write the defined cache size into the test array, then perform Flash read and

write operation, and finally compare and verify the written array and read array.

The flowchart and code content of the main program code and read and write

operation flow code will be introduced below:

Figure 5-2 Flow Chart of Main Program Code for Flash Simulating EEPROM

Experiment

Document No.: AN1094

www.geehy.com Page 12

Figure 5-3 Main Program Code Diagram of Flash Simulating EEPROM

Experiment

5.2.1 USART GPIO pin configuration

Conduct basic structure configuration for the GPIO pins used by USART, and

configure the baud rate and output mode. The reference code is as follows:

5.2.2 Flash write operation configuration

In the APM32F4xx Flash simulating EEPROM experiment, the implementation of the

write operation is crucial. The code block diagram and code content of the write

operation implementation are introduced below. First make initialization definition of

variables in Flash_EE_Write function. The specific code is as follows:

Document No.: AN1094

www.geehy.com Page 13

In the initialization definition of Flash_EE_Write function:

OfsetAddr: Calculate the offset address of the incoming parameter in the sector.

This variable is used to judge whether the incoming offset address is

aligned with the start address of the sector.

Count: It is used to count how much remaining space in the operating sector can

be used for writing.

NumOfSector: Calculate how many sectors are used for write operation.

NumOfByte: Calculate the number of remaining bytes in the sector that is less

than one sector. When there are bytes written in the sector, this

variable is used to calculate the number of remaining bytes in the

sector and determine the number of places where write operation

can be performed.

After the definition initialization is introduced, the specific operation in Flash_EE_Write

function is introduced. The specific code is as follows:

Flash_EE_Write：

The if statement judges whether the offset address is aligned with the start address of the

sector.

Document No.: AN1094

www.geehy.com Page 14

The else statement is interpreted as misaligned.

Document No.: AN1094

www.geehy.com Page 15

The specific operation code includes the following steps:

1. When the incoming address is aligned with the start address of the sector, first

determine whether the written space is consistent with the size of the sector, and

then determine whether the remaining bytes of the sector and the size of the

remaining space can be written at once. After the judgment is made, the variable

initialization definition is calculated and written.

2. When the incoming address is not aligned with the start address of the sector,

first determine whether the written space is consistent with the space size of the

sector, and then determine whether the remaining bytes of the sector and the size

of the remaining space can be written at once. After the judgment is made, the

variable initialization definition is calculated and written.

Next, the initialization definition of variables in Flash_EE_WriteOneSector will be

introduced specifically as follows:

In the initialization definition of Flash_EE_Write function:

StartAddr: It is used to count the start address when writing the sector data. This

variable is used to read or write data to RAM before the erase

operation.

OffsetAddr: It is used to write data to this offset address.

Flash_EE_WriteOneSector：

Document No.: AN1094

www.geehy.com Page 16

The specific operation code includes the following steps:

1. Perform unlock operation

2. Check if the sector needs to erase.

3. If erase operation is required, first read the data and copy it to RAM, perform

the erase operation, and then write the data of the entire sector to RAM.

Document No.: AN1094

www.geehy.com Page 17

4. If erase operation is not required, the data can be directly written to the

incoming address.

5.2.3 Flash read operation configuration

In the experiment of APM32F4xx Flash simulating EEPROM, an eight-bit data

from the Flash only needs to be read for the read operation. The operation step

is to use the dereference to perform operation. The code content of the function

Flash_EE_Read and Flash_EE_ReadByte involving read operation is described

below:

Flash_EE_Read：

The specific operation code includes the following steps:

1. Read the values in the incoming addresses successively in the loop.

Flash_EE_ReadByte：

The specific operation code includes the following steps:

1. Read an eight-digit data by dereference.

Document No.: AN1094

www.geehy.com Page 18

6 Revision history

Table 1 Document Version History

Date Version Revision History

June 16, 2023 1.0 First draft

Document No.: AN1094

www.geehy.com Page 19

Statement

This manual is formulated and published by Zhuhai Geehy Semiconductor Co., Ltd.

(hereinafter referred to as "Geehy"). The contents in this manual are protected by laws

and regulations of trademark, copyright and software copyright. Geehy reserves the right

to correct and modify this manual at any time. Please read this manual carefully before

using the product. Once you use the product, it means that you (hereinafter referred to as

the "users") have known and accepted all the contents of this manual. Users shall use

the product in accordance with relevant laws and regulations and the requirements of this

manual.

1. Ownership of rights

This manual can only be used in combination with chip products and software products of

corresponding models provided by Geehy. Without the prior permission of Geehy, no unit

or individual may copy, transcribe, modify, edit or disseminate all or part of the contents

of this manual for any reason or in any form.

The "Geehy" or "Geehy" words or graphics with "®" or "TM" in this manual are

trademarks of Geehy. Other product or service names displayed on Geehy products are

the property of their respective owners.

2. No intellectual property license

Geehy owns all rights, ownership and intellectual property rights involved in this manual.

Geehy shall not be deemed to grant the license or right of any intellectual property to

users explicitly or implicitly due to the sale and distribution of Geehy products and this

manual.

If any third party’s products, services or intellectual property are involved in this manual, it

shall not be deemed that Geehy authorizes users to use the aforesaid third party’s

products, services or intellectual property, unless otherwise agreed in sales order or

sales contract of Geehy.

3. Version update

Users can obtain the latest manual of the corresponding products when ordering Geehy

products.

If the contents in this manual are inconsistent with Geehy products, the agreement in

Geehy sales order or sales contract shall prevail.

4. Information reliability

The relevant data in this manual are obtained from batch test by Geehy Laboratory or

cooperative third-party testing organization. However, clerical errors in correction or

errors caused by differences in testing environment may occur inevitably. Therefore,

users should understand that Geehy does not bear any responsibility for such errors that

may occur in this manual. The relevant data in this manual are only used to guide users

Document No.: AN1094

www.geehy.com Page 20

as performance parameter reference and do not constitute Geehy's guarantee for any

product performance.

Users shall select appropriate Geehy products according to their own needs, and

effectively verify and test the applicability of Geehy products to confirm that Geehy

products meet their own needs, corresponding standards, safety or other reliability

requirements. If loses are caused to users due to the user's failure to fully verify and test

Geehy products, Geehy will not bear any responsibility.

5. Compliance requirements

Users shall abide by all applicable local laws and regulations when using this manual and

the matching Geehy products. Users shall understand that the products may be restricted

by the export, re-export or other laws of the countries of the product suppliers, Geehy,

Geehy distributors and users. Users (on behalf of itself, subsidiaries and affiliated

enterprises) shall agree and promise to abide by all applicable laws and regulations on

the export and re-export of Geehy products and/or technologies and direct products.

6. Disclaimer

This manual is provided by Geehy "as is". To the extent permitted by applicable laws,

Geehy does not provide any form of express or implied warranty, including without

limitation the warranty of product merchantability and applicability of specific purposes.

Geehy will bear no responsibility for any disputes arising from the subsequent design and

use of Geehy products by users.

7. Limitation of liability

In any case, unless required by applicable laws or agreed in writing, Geehy and/or any

third party providing this manual "as is" shall not be liable for damages, including any

general damages, special direct, indirect or collateral damages arising from the use or no

use of the information in this manual (including without limitation data loss or inaccuracy,

or losses suffered by users or third parties).

8. Scope of application

The information in this manual replaces the information provided in all previous versions

of the manual.

©2023 Zhuhai Geehy Semiconductor Co., Ltd. - All Rights Reserved

